
Generative AI

Exposing Risky 
Parsing Gaps
in WAFs

2025



Executive summary

Why WAF‑only 
defenses struggle today

Attackers have moved beyond simple signature evasion. Many successful attacks now exploit the way 
different parts of a web stack disagree about the meaning of the same request. Increasingly, generative AI 
tools allow attackers to automate and accelerate this process - rapidly generating and testing thousands of 
small request variants to probe for parsing differences that a WAF might miss.

A WAF may accept a request that the application subsequently interprets very differently, which lets malicious 
content slip through without raising an alert. RedShield’s application security service includes in-flight security 
patches which address this by operating in the traffic path to normalize ambiguous inputs and apply targeted 
fixes to known weaknesses - without touching the application's code. This means transforming incoming HTTP 
requests so that any unusual, inconsistent, or non-standard formatting is cleaned up and made consistent 
before the request reaches the application.

The result is lower residual risk, faster time to mitigation, and clearer evidence that risky behavior is 
prevented.

A modern web request passes through a CDN or proxy, a WAF, and finally the application framework. Each 
layer parses and interprets that request. If those interpretations differ, an attacker can craft inputs that look 
harmless to the WAF but resolve into something dangerous at the application. Generative AI makes it easier 
for adversaries to do this inexpensively and at scale. Typical examples include mixed or malformed content 
types, repeated parameters in a form, or conflicting headers that cause one system to read a body while 
another ignores it. None of this requires exotic techniques - only careful manipulation of edge cases that arise 
in the gaps between components.

The problem is not a lack of rules; it is that rules attached to an approximate understanding of a request do 
not control the behavior that matters. You end up with tuning cycles, exceptions for legitimate traffic, and 
lingering audit findings while engineering teams schedule code changes.

2

Beyond WAF Signatures | Exploiting and Defending Parsing Mismatches

WAF bypasses aren’t a simple patch or tune issue but stem from a core gap in many reverse-proxy-based WAF 
architectures - restricting their utility to threat management rather than vulnerability management (finding 
and fixing the weaknesses that attackers exploit).

Example - WAFFLED: bypassing WAFs 
via parsing discrepancies

WAFFLED is a research framework 
(Akhavani et al., 2025) that demonstrated 
1,207 successful WAF bypasses by 
changing only the structure of HTTP 
bodies (multipart/form‑data, JSON, XML) 
rather than the attack payload. The trick 
is to exploit tiny differences in how WAFs 
and web frameworks parse the same 
request.

What is it
Instead of hiding a malicious string, 
WAFFLED tweaks things like multipart 
boundaries or JSON field wrappers so 
the WAF parses one meaning (or gives 
up), while the backend framework 
parses another and accepts the payload. 
Because the payload itself is unchanged, 
signature rules still look “right” but the 
request slips through.

How it works



3

The WAF sees boundary=fake, 
ignores the rest, and misses the 
XSS. The Backend concatenates 
boundary*0 and boundary*1 → 
real-boundary, parses the XSS, 
and executes it.

This is not payload obfuscation - 
it’s parser confusion.

In default, vendor‑recommended 
configurations, the study found bypasses 
across several major WAFs. For example, 
Cloudflare WAF (Pro plan, Managed 
Rules + OWASP CRS) was bypassed for 
multipart, JSON and XML. The authors 
also observed that over 90% of tested 
sites accept form‑encoded and multipart 
bodies interchangeably - exactly the kind 
of ambiguity these attacks rely on.

Why it matters
This is not about any one vendor; it’s 
about the gap between classification 
and interpretation. The defense is to 
normalize inputs before the app sees 
them and make ambiguous cases 
explicit. RedShield’s in‑flight patches 
performs this normalization in practice, 
enforcing strict message framing and 
content types, defining clear policies for 
duplicates, and re‑serializing malformed 
bodies so the WAF and the application 
see the same request.

Implication for your stack

WAFFLED Example - Multipart Boundary Smuggling

POST / HTTP/1.1
Host: victim.com

Content-Type: multipart/form-data;
 boundary=fake;boundary*0=real-;boundary*1=boundary

--fake
Content-Disposition: form-data; name=”field1”
value1
--fake--

--real-boundary
Content-Disposition: form-data; name=”xss”
<script>alert(1)</script>
--real-boundary--

In a recent pentest, Bruno Mendes [Mendes, 2025] demonstrated how HPP can bypass even strict WAF 
configurations on an ASP.NET application:

Like WAFFLED, this is not obfuscation - it’s protocol-level smuggling, where the attack is assembled only at the 
application layer.

Example - HPP as
Semantic Smuggling

GET /search?q=1’&q=alert(1)&q=’2 HTTP/1.1

userInput = ‘1’,alert(1),’2’;

•	 WAF: Scans each q parameter in isolation. Sees alert(1) but misses context. 

•	 Backend (ASP.NET): Concatenates values: 1',alert(1),'2 

•	 Reflected in JavaScript:

•	 → Valid, executable code via the comma operator.



4

What RedShield does 
differently
RedShield adds a managed “fix” layer in the request/response path. Before traffic reaches the application, 
RedShield-developed in-flight security patches:

Because changes are made in‑flight, you do not need to change application code to close gaps. In-flight 
patches are scoped to the routes and behaviours that matter, rolled out safely, and removed once permanent 
fixes are in place in the applications, if you prefer.

•	 Normalize inputs so that ambiguous or invalid encodings are made explicit or rejected. 

•	 Make intent clear by defining policies for situations your frameworks handle in different ways (for example, what 
to do with duplicate parameters). 

•	 Apply targeted logic to address known weaknesses on specific routes, such as enforcing strict content types, 
removing unexpected fields from JSON bodies, or inserting missing controls like anti‑CSRF tokens.

Outcomes that matter to 
CISOs and CTOs
RedShield’s approach reduces exposure immediately while engineering keeps moving at its desired pace. In 
practice, teams see:

	• Faster remediation of high‑risk findings (hours or days, not multiple sprints). 

	• Fewer bypasses versus WAF‑only because decisions are made at the same semantic level as the application. 

	• Lower tuning overhead and clearer run‑books: policies are explicit and measured. 

	• Audit‑ready evidence showing which routes are protected and which inputs are rejected.

Beyond WAF Signatures | Exploiting and Defending Parsing Mismatches



5

Questions to ask your team
	• Do our WAFs parse requests differently to our applications? 

	• Which endpoints accept multiple content types or allow repeated fields that could mask intent? 

	• Which open findings could be mitigated today without changing application code?

A simple 
scenario
Consider a search form where the same field is 
submitted more than once. Some frameworks 
silently join those values; others pick the 
first or last. A WAF often inspects each value 
separately and sees nothing dangerous, while 
the joined value becomes harmful only inside the 
application. RedShield can enforce a clear policy 
- reject duplicates on sensitive routes, or emulate 
the exact behaviour your framework expects - so 
the risky combination never reaches the code.

How this fits into 
your environment
Deployment is straightforward. We start by 
reviewing existing findings and a small set of 
high‑value flows. In a short observation phase 
we confirm where interpretation gaps occur and 
baseline false positives. We then deploy in‑flight 
patches on those flows, initially in shadow or 
route‑limited mode. Rollout is versioned and 
reversible. Ongoing dashboards show coverage by 
route, blocked attempts, and patch health, giving 
you a clean hand‑off to engineering for permanent 
fixes when appropriate.

For a deeper dive into the challenges of web application 
security and how RedShield helps organizations
address them, download our whitepaper
and visit us at RedShield.co.

Learn More

Next step
Run a limited‑route trial. We will normalize inputs and apply targeted patches “out of path” (no production 
impact) for one web application, then report the measured reduction in risk and operational effort. If it meets 
your bar, move the patches into the production path, and extend coverage across other high‑value routes 
while engineering focuses on permanent fixes where they add the most value.

Beyond WAF Signatures | Exploiting and Defending Parsing Mismatches


